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vation energy, E,, which is given by 

E, = XcRT where X, = I - =nA In A. (43) 
! 1”1”“1 I 

Thus for the critical value of E, one obtains 

3. 
With this value of Z$ in hand, one obtains the pyrolyzed 

material ratio, Q/Q, from equations (37) and (38). The 4. 
graphical representation of Q/Q,, for different temperatures 
can be seen in Fig. 2. 
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INTRODUCTION 

MANY STUDIES have been done in the past concerning natural 
convection heat transfer into a fluid medium of infinite 
extent. More recently several studies have examined natural 
convection heat transfer to an enclosed fluid, where the con- 
vective motion is limited. Useful correlation equations have 
been developed for each case. 

One difficulty often encountered in using these empirical 
equations is determining the range of gap width over which 
the equations for convection within an enclosure are appli- 

cable and when theequations for heat transfer into an infinite 
atmosphere apply. The object of this study was to examine 
heat transfer within an enclosure, increasing the gap width 
ratio over that studied previously to determine the bounds 
within which enclosure equations are appiicable. The existing 
correlation equations were first analyzed to determine the 
range of gap width ratios which would most likely form the 
bounds for the two sets of equations. Bodies of varying sizes 
were then built to cover the range of gap width ratios required 
by the analysis. 

The analysis showed that for Ra, ranging from 10’ to IO”‘, 
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the transition from the enclosure equations to the infinite 
atmosphere equations would occur within a range of gap 
width ratios between 2.5 and 5.0. The inner bodies built 
for use in the 27 cm cubical outer body included cubes 
(2.28 < L/Ri < 4.25) and cylinders (2.84 Q L/R, < 5.89). 
Four fluids were used; air, water, 20 cs silicone oil, and 96% 
aqueous glycerin, yielding Prandtl numbers from 0.704 to 
10000. 

The data from this experimental work was compared with 
previous studies for both free convection within an enclosure 
and free convection into an infinite atmosphere. Empirical 
equations were derived from this data, but, more important, 
was the development of criteria for determining whether a 
system should be considered enclosed or infinite. 

For an infinite atmosphere, correlation of data taken from 
a variety of shapes by Nusselt, McAdams and King [l] shows 
that, for Ra z 104, the following equation applies : 

Nu, = O.~~(RU~)~~~~ (1) 

where the characteristic dimension, D, is the diameter for 
cylinders and spheres, and the side length for cubes. 

In a study restricted to horizontal pipes in air and water, 
McAdams [2] recommended using a coefficient of 0.53 for 
Ra ranging from lo3 to 109. He also gives the results of an 
analytical study by Hermann, which yielded a coefficient of 
0.40. 

Lienhard [3] did both theoretical and experimental work 
on external free convection using a variety of shapes. He 
equated the drag force of the body on the boundary layer 
with the buoyant force of the boundary layer on the body 
and recommends using equation (1) with the boundary layer 
length, b, as the characteristic dimension (b is the distance 
traveled by the boundary layer around the inner body). He 
experimented with vertical plates, horizontal cylinders and 
spheres and found that the equation accurately predicted the 
heat transfer. 

Studies have also been done on natural convection within 
an enclosure, showing that the same dimensionless para- 
meters that were used to correlate convection to an infinite 
atmosphere (the Nusselt, Grashof, Prandtl and Rayleigh 
numbers) also work well in correlating the results of experi- 
ments on convection within an enclosure. In addition, some 
dimensionless ratio of characteristic dimensions is needed. 
The general form of the equation is the same as equation (l), 
with the ratio of characteristic dimensions as an additional 
parameter. 

Scanlan et al. [4] correlated free convection between two 
concentric spheres. Warrington and Powe [5] extended the 
data to include convection from cubes, cylinders and spheres 
to a cubical enclosure. By defining the hypothetical radius 
as the radius of a sphere of the same volume as the body in 
question, they were able to correlate all available enclosure 
heat transfer data using the hypothetical gap width ratio, 
(R,- R,)/R, or L/R,, as the geometric parameter (Rr and R, 
are the hypothetical radii of the inner and outer bodies, 
respectively). They correlated the available data with 

Nub = 0.590(Ra,)0~Z35(L/R,)o~za~ (2) 

with an average percent deviation of 14.54. Because the 
exponents on the Rayleigh number and hypothetical gap 
width ratio are nearly the same, the two parameters can be 
combined with only a small loss in accuracy. This simplifies 
equation (2) to 

Nub = 0.585(R~$)~.~~~ (3) 

where Ru* is the modified Rayleigh number, (Ru)(L/RJ. 
This equation had an average percent deviation of 14.75. 

On examination of Warrington and Powe’s equations (2) 
and (3), it can be observed that for large values of L/R! the 
Nusselt number becomes unbounded. Powe [6] made this 
same observation of Scanlan et ul.‘s [4] equations and noted 
that the Nusselt number should be bounded by the Nusselt 
number yielded by the equations for convection into an 

infinite atmosphere. Using equations for enclosures and for 
an infinite atmosphere, Powe noted that the enclosure equa- 
tion could be used until the gap width ratio was between 1.3 
and 2.2 for air and 2.0 and 4.0 for water. The exact value of 
L/Ri at which he recommended switching the infinite atmo- 
sphere equation was a function of the Rayleigh number. 

Powe also noted that for small values of L/Ri heat transfer 
would be primarily due to conduction rather than convec- 
tion. He recommended that the enclosure equation be used 
until the gap width ratio was reduced to where the equation 
for pure conduction predicted a higher heat transfer, at which 
point the conduction equation should be implemented. War- 
rington et al. [7j presented solutions for the conduction from 
bodies of various shapes to their enclosure. By evaluating 
conduction solutions and comparing them to the equation 
for convection into an enclosed fluid, it can be determined 
whether convection or conduction dominate as the means of 
heat transfer. It is recommended that one use whichever 
predicts the higher value for heat transfer. 

Very little data are available for free convection within 
enclosures for large values of L/RI, where the equations for 
enclosures and those for an infinite atmosphere predict the 
same value for the Nusselt number. The purpose of this study 
is to investigate that area. A detailed description of the 
apparatus comprising the test space, the experimental pro- 
cedure, data reduction, and experimental uncertainty is given 
by Warrington and Powe [5] and will not be repeated here. 

HEAT TRANSFER AND TEMPERATURE 
PROFILE RESULTS 

Most of the existing equations for free convection into an 
infinite atmosphere yield similar results for the range of 
Rayleigh numbers of concern in this study, so one, equation 
(l), was chosen as a representative standard for free con- 
vection into an infinite atmosphere. This equation, reported 
by Jakob [l], represented the correlation of data from several 
different shapes, including those used in this investigation. 
Warrington and Powe [5] developed his empirical equation 
from a wide range of data from several sources, therefore, 
equation (3) was used as the standard for natural convection 
within enclosures. 

To compare the two equations, equation (1) was rewritten 
using the distance travelled by the boundary layer as the 
characteristic dimension. For convection from cubes, the 
infinite atmosphere equation becomes 

Nub = O.~I~(RU~)~-~~. (4) 

As L/Ri increases, the heat transfer predicted by the enclosure 
equation increases without bound. Since the infinite atmo- 
sphere equation predicts the heat transfer for infinite L/R,, 
it should form the upper bound for the enclosure equation. 
Equating Nusselt numbers from equations (3) and (4) then 
yields the lower limit of applicability of equation (4) as 

(L/R+) = I.~~(Ru,)~~"~~~. (5) 

The values of L/R; defined by this transition range from 2.5 
to 5.0, which is higher than the range of 1.34.0 as found by 
Powe [6]. It should be noted that Powe based his calculations 
on data from spheres only. 

Based on the results of the above analysis, seven inner 
bodies were tested to provide data for L/R, ranging from 2.28 
to 5.89 and Rayleigh number ranges of 4.1 x 105-1.4~ IO'O 
(based on b) and 2.9 x lOa- x IO8 (based on D). The data 
taken from these seven bodies were correlated in several ways 
[5] using standard least-squares curve fitting techniques. The 
exclusion of the geometric factor (L/R,) had little effect on 
the accuracy of any of the equations. This indicates that, for 
this range of L/e, the enclosure has little effect on the heat 
transfer. Warrington and Powe [5] found that for small L/R, 
the geometric parameter had a much larger effect. Excluding 
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FIG. 2. Correlation of all transition region data with enclosure equation. 

the geometric factor, the best equation for an enclosure was equation or the data indicate. This is as expected since equa- 
tion (6) was obtained from data where the gap width ratio 

Nub = 0.954(Rrr,)” *“*. (6) was small, and the equation form does not account for 
changes in the gap width ratio. 

This equation had an average percent deviation of 18.5 1. The best enclosure equation (3) includes the geometric 
Figure 1 shows all of the transition region data compared parameter, and Fig. 2 shows that the correlation was greatly 

with the enclosure equation (6) and the infinite atmosphere improved by adding this parameter. Table 1 shows thdt this 
equation (4). It should be noted that this enclosure predicts form of the equation has nearly the same accuracy as the 
a lower Nusselt number than either the infinite atmosphere infinite atmosphere equation. 

Table I. Correlation comparison between infinite atmosphere equation and enclosure equation 

Data included 

Infinite atmosphere equation 
Nu, = 0.52Rai 25 

Average Percentage of data 
percentage within + 20% 
deviation of equation 

Enclosure equation 
Nu, = 0.585(Ra$)’ “’ 

Average Percentage of data 
percentage within + 20% 
deviation of equation 

All data 13.23 80.84 12.71 84.94 
Cubes 14.65 74.32 15.06 78.38 
Cylinders 11.20 86.96 10.83 90.22 
All data : 

L/R, i 1.26Rah0_osq 11.96 90. I I 
L/Ri z l.26Ra~~0s’ 12.17 84.00 
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FIG. 3. Comparison between infinite atmosphere and enclosure equations. 

Figure 3 shows that the best enclosure equation (3) 
accounts for the effect of changing L/Ri. As L/R, increases 
into the transition region, both the enclosure equation (3) 
and the infinite atmosphere equation (4) predict nearly the 
same heat transfer. Either equation could be used in this 
region, but Table 1 shows that the use of equation (5) as the 
transition criterion improves the correlations. By including 
only those points consistent with the transition criterion, 
the average percent deviation involved in using the infinite 
atmosphere equation is decreased from 13.23 to 12.17%, and 
the enclosure equation deviation is reduced from 12.71 to 
11.96%. 

Temperature distributions within the gap were obtained 
at two vertical planes and at five angular positions in each 
plane. Figure 4 shows the temperature profile for the 6.67 
cm cube in air. In this figure the temperature ratio is the local 
temperature minus the outer body temperature divided by 
the temperature difference between the inner and outer 
bodies and the radius ratio is the local radius minus the 
distance from the center of the inner body to the surface of 
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FIG. 4. Temperature profile in the perpendicular plane, 
6.67 cm cube in air. 

the inner body divided by the difference in radii of the 
outer and inner bodies (all measured at the same angular 
position) [5]. According to equation (5), the system shown in 
Fig. 4 is very close to the transition between the enclosure 
and infinite atmosphere regions. This profile exhibits charac- 
teristics of the infinite atmosphere profiles as presented 
by Holman [8] and the enclosure profiles presented by War- 
rington and Powe [5]. 

CONCLUSIONS AND RECOMMENDATIONS 

This study has increased the amount of heat transfer and 
temperature profile data by extending the range of the hypo- 
thetical gap width ratio beyond that studied previously. This 
has increased the utility of the existing equations for natural 
convection both within an enclosure and in an infinite atmo- 
sphere by defining the range of hypothetical gap width ratios 
over which each are valid. The authors recommend War- 
rington and Powe’s [5] equation (3) for convection within 
enclosures and Jakob’s [l] equation (1) for convection to 
an infinite atmosphere. The authors recommend the use of 
equation (5) as the upper limit for use of the enclosure 
equation. 
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